Would You Rather... Enaman Sell a batch of 30 cookies altogether for $\$ 15$ with a cost to make of $\$ 6$? Explain your choice. Find more here: https://www.wouldyourathermath.com/categ ory/3to5/	Dot Talk How many dots do you see? How do you see them? Can you find more than one way to find the total number of dots.? Use multiplication to solve for the number of dots	Design a Game Design a math game to practice multiplication and division. Think about other math games you have olayed in school or at home. Search online for ideas. What original math game could you create? Play your game with someone at home. Share a oicture and description of your game with your teacher.
1 Teaspoon $=4$ grams of Sugar Divide the total number of grams listed by 4 to calculate the number of teaspoons of sugar. For example: Sugar $32 \mathrm{~g}=32 / 4=8$ Teaspoon Sugar Count Find how many grams of sugar are in the sugary snacks and drinks you like. This information can be found on products at home or online. *Once you have figured out how many grams of sugar are in your favorite snacks and drinks, use the image above to show how much sugar is in your treats. Dump a teaspoon of sugar into a baggie for every 4 grams of sugar in your snacks.	Math about me! Create your own Figure me out using multiplication and division and have someone figure you out. Ask someone at home to design one for you to figure put. Share a picture with your teacher if you can.	Candy Data I got 8 Skittles from the vending machine for 25 ¢ . the better buy? Explain your choice. Create your own Would you Rather to share with someone at home or your teacher.
Use a deck of cards and a pencil to act as the fraction line. Goal: to develop quick comparison of fraction values Rules: Shuffle and deal the cards. Each player puts their cards faced down in a pile. Both players turn over TWO cards at the same time (smaller card goes on top as the numerator and the larger card is on the bottom as the denominator) The player whose cards has the larger fraction wins all four cards. If players turn over equivalent fractions (fractions of the same value) then there is a fraction war. Each player creates a new fraction with 2 new cards and whoever has the higher fraction wins all the cards. The game continues until one player has all the cards or for a given amount of time.	Cat Conundrum What is the value of each cat in the equations below? Work together to solve it. Hint: There is only one paw in the bottom equation.	What do you see? Explore three different ways to find the total number of black and white circles. How many black circles? How many white circles? How many in each row, each column? Draw your own dot image to share with someone else. Make sure they explain how they see your oicture.

Grade Five Numeracy Choice Board - Family Learning Guide

Would You Rather...	Dot Talk	Design a Game
Have your child do the math and explain/justify their choice.	This activity encourages seeing numbers in many ways, called flexibility with numbers.	Students might use paper and design a gameboard or use playing cards or dice to create their math
Do you or someone at home think differently? Justify your different thinking.	Explaining how you see the dots differently than your child will promote flexibility.	game. Encourage an original spin on the math game they
		create and have fun playing!
Find more Would You Rather questions here: https://www.wouldyourathermath.com/category/3to5/	Find more images here: http://ntimages.weebly.com/points--dots.html	
1 Teaspoon= 4 grams of Sugar	Math About Me!	Which is the Better Buy?
$=\square=\text { surar }$	Your child would love to figure you out if you are able to create your own Math about me.	Support your child in creating their own Would you Rather challenge.
1 teaspoon 1 sugar cube 1 sugar packet		Visit: https://www.wouldyourathermath.com/cate gory/3to5/
For example: Sugar seg $=39 / 4=8$ Teaspoon		for more examples.
Sugar Count Example: A KitKat bar has 22g of sugar. 22 is closest to 20 so $20 \div 4=5$. Dump 5 tsp of sugar into a bag to show the sugar content of the bar. Yuck!		
Try Gatorade or Soda for a real shock and you may think twice about drinking it again. Consider cereal and lunch snacks too.		
Fraction War	Cat Conundrum	What Do You See?
If two fractions have a common denominator, the fraction with the larger numerator is the larger fraction.	Find more mystery image puzzles here: https://mashupmath.com/freemathpuzzles	This activity encourages seeing numbers in many
Ex: $3 / 5>2 / 5$		This activity encourages seeing numbers in many ways, called flexibility with numbers. Encourage
If two fractions have a common numerator, the fraction with the smaller denominator is larger. Ex: $1 / 4>1 / 8$		your child to find more than one way to see the numbers and find the total. Explaining how you see
If you are unsure about which fraction is larger, use fraction strips to compare. Find a copy here or use the		the image differently than your child will promote
one below: https://www.math-		flexibility.
drills.com/fractions/fraction strips blm labeled.php		Find more images here: http://ntimages.weebly.com/photos.html
$\frac{1}{2}$ $\frac{2}{2}$		
$\begin{array}{lll} \hline \frac{1}{3} & \frac{2}{3} & \frac{3}{3} \\ \hline \end{array}$		
$\begin{array}{l\|l\|l\|l\|} \hline \frac{1}{5} & \frac{2}{5} & \frac{3}{5} & \frac{4}{6} \\ \hline \end{array}$		
$\begin{array}{\|l\|l\|l\|l\|l\|} \hline \frac{2}{6} & \frac{2}{6} & \frac{3}{6} & \frac{4}{6} & \frac{5}{6} \\ \hline \end{array}$		
$\frac{1}{7}$ $\frac{2}{7}$ $\frac{3}{7}$ $\frac{4}{7}$ $\frac{5}{7}$ $\frac{6}{7}$ $\frac{7}{7}$		
$\frac{1}{10}$ $\frac{2}{10}$ $\frac{3}{10}$ $\frac{4}{10}$ $\frac{5}{10}$ $\frac{6}{10}$ $\frac{7}{10}$ $\frac{8}{10}$ $\frac{9}{10}$ $\frac{10}{10}$ 10		
You can also have your child think about whether the fractions are closer to $0,1 / 2$ or 1 whole.		

